skip to main content

Structural Plastome Evolution in Holoparasitic Hydnoraceae with Special Focus on Inverted and Direct Repeats

Jost, Matthias ; Naumann, Julia ; Bolin, Jay F. ; Martel, Carlos ; Rocamundi, Nicolás ; Cocucci, Andrea A. ; Lupton, Darach ; Neinhuis, Christoph ; Wanke, Stefan Sloan, Daniel

Genome biology and evolution, 2022-05, Vol.14 (6)

England: Oxford University Press

Texto completo disponível

Citações Citado por
  • Título:
    Structural Plastome Evolution in Holoparasitic Hydnoraceae with Special Focus on Inverted and Direct Repeats
  • Autor: Jost, Matthias ; Naumann, Julia ; Bolin, Jay F. ; Martel, Carlos ; Rocamundi, Nicolás ; Cocucci, Andrea A. ; Lupton, Darach ; Neinhuis, Christoph ; Wanke, Stefan
  • Sloan, Daniel
  • É parte de: Genome biology and evolution, 2022-05, Vol.14 (6)
  • Notas: ObjectType-Article-1
    SourceType-Scholarly Journals-1
    ObjectType-Feature-2
    content type line 23
  • Descrição: Abstract Plastome condensation during adaptation to a heterotrophic lifestyle is generally well understood and lineage-independent models have been derived. However, understanding the evolutionary trajectories of comparatively old heterotrophic lineages that are on the cusp of a minimal plastome, is essential to complement and expand current knowledge. We study Hydnoraceae, one of the oldest and least investigated parasitic angiosperm lineages. Plastome comparative genomics, using seven out of eight known species of the genus Hydnora and three species of Prosopanche, reveal a high degree of structural similarity and shared gene content; contrasted by striking dissimilarities with respect to repeat content [inverted and direct repeats (DRs)]. We identified varying inverted repeat contents and positions, likely resulting from multiple, independent evolutionary events, and a DR gain in Prosopanche. Considering different evolutionary trajectories and based on a fully resolved and supported species-level phylogenetic hypothesis, we describe three possible, distinct models to explain the Hydnoraceae plastome states. For comparative purposes, we also report the first plastid genomes for the closely related autotrophic genera Lactoris (Lactoridaceae) and Thottea (Aristolochiaceae).
  • Editor: England: Oxford University Press
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.