skip to main content
Visitante
Meu Espaço
Minha Conta
Sair
Identificação
This feature requires javascript
Tags
Revistas Eletrônicas (eJournals)
Livros Eletrônicos (eBooks)
Bases de Dados
Bibliotecas USP
Ajuda
Ajuda
Idioma:
Inglês
Português
Espanhol
This feature required javascript
This feature requires javascript
Primo Search
Busca Geral
Busca Geral
Acervo Físico
Acervo Físico
Produção Intelectual da USP
Produção USP
Search For:
Clear Search Box
Search in:
Busca Geral
Or hit Enter to replace search target
Or select another collection:
Search in:
Busca Geral
Busca Avançada
Busca por Índices
This feature requires javascript
This feature requires javascript
A Partition Function Approximation Using Elementary Symmetric Functions (Partition Function Approximation)
Anandakrishnan, Ramu Garrahan, Juan P. (Editor)
2012, Vol.7(12), p.e51352
[Periódico revisado por pares]
Texto completo disponível
Citações
Citado por
Exibir Online
Detalhes
Resenhas & Tags
Mais Opções
This feature requires javascript
Enviar para
Adicionar ao Meu Espaço
Remover do Meu Espaço
E-mail (máximo 30 registros por vez)
Imprimir
Link permanente
Referência
EasyBib
EndNote
RefWorks
del.icio.us
Exportar RIS
Exportar BibTeX
This feature requires javascript
Título:
A Partition Function Approximation Using Elementary Symmetric Functions (Partition Function Approximation)
Autor:
Anandakrishnan, Ramu
Garrahan, Juan P. (Editor)
Assuntos:
Research Article
;
Computer Science
;
Mathematics
;
Physics
;
Computer Science
;
Physics
;
Mathematics
É parte de:
2012, Vol.7(12), p.e51352
Descrição:
In statistical mechanics, the canonical partition function can be used to compute equilibrium properties of a physical system. Calculating however, is in general computationally intractable, since the computation scales exponentially with the number of particles in the system. A commonly used method for approximating equilibrium properties, is the Monte Carlo (MC) method. For some problems the MC method converges slowly, requiring a very large number of MC steps. For such problems the computational cost of the Monte Carlo method can be prohibitive. Presented here is a deterministic algorithm – the direct interaction algorithm (DIA) – for approximating the canonical partition function in operations. The DIA approximates the partition function as a combinatorial sum of products known as elementary symmetric functions (ESFs), which can be computed in operations. The DIA was used to compute equilibrium properties for the isotropic 2D Ising model, and the accuracy of the DIA was compared to that of the basic Metropolis Monte Carlo method. Our results show that the DIA may be a practical alternative for some problems where the Monte Carlo method converge slowly, and computational speed is a critical constraint, such as for very large systems or web-based applications.
Idioma:
Inglês
This feature requires javascript
This feature requires javascript
Voltar para lista de resultados
This feature requires javascript
This feature requires javascript
Buscando em bases de dados remotas. Favor aguardar.
Buscando por
em
scope:(USP_PRODUCAO),scope:(USP_EBOOKS),scope:("PRIMO"),scope:(USP),scope:(USP_EREVISTAS),scope:(USP_FISICO),primo_central_multiple_fe
Mostrar o que foi encontrado até o momento
This feature requires javascript
This feature requires javascript