skip to main content

Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.(RESEARCH: LETTER)

De Greve, Kristiaan ; Yu, Leo ; Mcmahon, Peter L. ; Pelc, Jason S. ; Natarajan, Chandra M. ; Kim, Na Young ; Abe, Eisuke ; Maier, Sebastian ; Schneider, Christian ; Kamp, Martin ; Hofling, Sven ; Hadfield, Robert H. ; Forchel, Alfred ; Fejer, M.M. ; Yamamoto, Yoshihisa

Nature, Nov 15, 2012, Vol.491(7424), p.421(6) [Periódico revisado por pares]

Texto completo disponível

Citações Citado por
  • Título:
    Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.(RESEARCH: LETTER)
  • Autor: De Greve, Kristiaan ; Yu, Leo ; Mcmahon, Peter L. ; Pelc, Jason S. ; Natarajan, Chandra M. ; Kim, Na Young ; Abe, Eisuke ; Maier, Sebastian ; Schneider, Christian ; Kamp, Martin ; Hofling, Sven ; Hadfield, Robert H. ; Forchel, Alfred ; Fejer, M.M. ; Yamamoto, Yoshihisa
  • Assuntos: Quantum Mechanics – Research ; Photons – Observations ; Quantum Dots – Observations
  • É parte de: Nature, Nov 15, 2012, Vol.491(7424), p.421(6)
  • Descrição: Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.