skip to main content
Visitante
Meu Espaço
Minha Conta
Sair
Identificação
This feature requires javascript
Tags
Revistas Eletrônicas (eJournals)
Livros Eletrônicos (eBooks)
Bases de Dados
Bibliotecas USP
Ajuda
Ajuda
Idioma:
Inglês
Português
Espanhol
This feature required javascript
This feature requires javascript
Primo Search
Busca Geral
Busca Geral
Acervo Físico
Acervo Físico
Produção Intelectual da USP
Produção USP
Search For:
Clear Search Box
Search in:
Busca Geral
Or hit Enter to replace search target
Or select another collection:
Search in:
Busca Geral
Busca Avançada
Busca por Índices
This feature requires javascript
This feature requires javascript
Subexponential algorithms for partial cover problems
Fomin, Fedor V ; Lokshtanov, Daniel ; Raman, Venkatesh ; Saurabh, Saket
Information Processing Letters, 2011, Vol.111(16), pp.814-818
[Periódico revisado por pares]
Texto completo disponível
Citações
Citado por
Exibir Online
Detalhes
Resenhas & Tags
Mais Opções
This feature requires javascript
Enviar para
Adicionar ao Meu Espaço
Remover do Meu Espaço
E-mail (máximo 30 registros por vez)
Imprimir
Link permanente
Referência
EasyBib
EndNote
RefWorks
del.icio.us
Exportar RIS
Exportar BibTeX
This feature requires javascript
Título:
Subexponential algorithms for partial cover problems
Autor:
Fomin, Fedor V
;
Lokshtanov, Daniel
;
Raman, Venkatesh
;
Saurabh, Saket
Assuntos:
Graph Algorithms
;
Parameterized Algorithms
;
Subexponential Algorithms
;
Partial Cover Problems
;
Partial Dominating Set
;
Computer Science
É parte de:
Information Processing Letters, 2011, Vol.111(16), pp.814-818
Descrição:
Partial Cover problems are optimization versions of fundamental and well-studied problems like and . Here one is interested in covering (or dominating) the maximum number of edges (or vertices) using a given number of vertices, rather than covering all edges (or vertices). In general graphs, these problems are hard for parameterized complexity classes when parameterized by . It was recently shown by Amini et al. (2008) that and are fixed parameter tractable on large classes of sparse graphs, namely -minor-free graphs, which include planar graphs and graphs of bounded genus. In particular, it was shown that on planar graphs both problems can be solved in time . During the last decade there has been an extensive study on parameterized subexponential algorithms. In particular, it was shown that the classical and problems can be solved in subexponential time on -minor-free graphs. The techniques developed to obtain subexponential algorithms for classical problems do not apply to partial cover problems. It was left as an open problem by Amini et al. (2008) whether there is a subexponential algorithm for and . In this paper, we answer the question affirmatively by solving both problems in time not only on planar graphs but also on much larger classes of graphs, namely, apex-minor-free graphs. Compared to previously known algorithms for these problems our algorithms are significantly faster and simpler. ► First parameterized subexponential time algorithm for partial cover problems. ► Includes problems like and . ► Works for planar and apex-minor-free graphs.
Idioma:
Inglês
Links
View record in ScienceDirect (Access to full text may be restricted)
This feature requires javascript
This feature requires javascript
Voltar para lista de resultados
This feature requires javascript
This feature requires javascript
Buscando em bases de dados remotas. Favor aguardar.
Buscando por
em
scope:(USP_PRODUCAO),scope:(USP_EBOOKS),scope:("PRIMO"),scope:(USP),scope:(USP_EREVISTAS),scope:(USP_FISICO),primo_central_multiple_fe
Mostrar o que foi encontrado até o momento
This feature requires javascript
This feature requires javascript