skip to main content
Primo Search
Search in: Busca Geral

Room-temperature near-infrared silicon carbide nanocrystalline emitters based on optically aligned spin defects

Muzha, A. ; Fuchs, F. ; Tarakina, N. V. ; Simin, D. ; Trupke, M. ; Soltamov, V. A. ; Mokhov, E. N. ; Baranov, P. G. ; Dyakonov, V. ; Krueger, A. ; Astakhov, G. V.

Applied Physics Letters, 15 December 2014, Vol.105(24) [Periódico revisado por pares]

Texto completo disponível

Citações Citado por
  • Título:
    Room-temperature near-infrared silicon carbide nanocrystalline emitters based on optically aligned spin defects
  • Autor: Muzha, A. ; Fuchs, F. ; Tarakina, N. V. ; Simin, D. ; Trupke, M. ; Soltamov, V. A. ; Mokhov, E. N. ; Baranov, P. G. ; Dyakonov, V. ; Krueger, A. ; Astakhov, G. V.
  • Assuntos: Nanoscale Science And Technology
  • É parte de: Applied Physics Letters, 15 December 2014, Vol.105(24)
  • Descrição: Bulk silicon carbide (SiC) is a very promising material system for bio-applications and quantum sensing. However, its optical activity lies beyond the near infrared spectral window for in-vivo imaging and fiber communications due to a large forbidden energy gap. Here, we report the fabrication of SiC nanocrystals and isolation of different nanocrystal fractions ranged from 600 nm down to 60 nm in size. The structural analysis reveals further fragmentation of the smallest nanocrystals into ca. 10-nm-size clusters of high crystalline quality, separated by amorphization areas. We use neutron irradiation to create silicon vacancies, demonstrating near infrared photoluminescence. Finally, we detect room-temperature spin resonances of these silicon vacancies hosted in SiC nanocrystals. This opens intriguing perspectives to use them not only as in-vivo luminescent markers but also as magnetic field and temperature sensors, allowing for monitoring various physical, chemical, and biological processes.
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.