skip to main content
Primo Search
Search in: Busca Geral

One-hundred-km-scale basins on Enceladus: Evidence for an active ice shell

Schenk, Paul M. ; McKinnon, William B.

Geophysical research letters, 2009-08, Vol.36 (16), p.L16202-n/a [Periódico revisado por pares]

Washington, DC: American Geophysical Union

Texto completo disponível

Citações Citado por
  • Título:
    One-hundred-km-scale basins on Enceladus: Evidence for an active ice shell
  • Autor: Schenk, Paul M. ; McKinnon, William B.
  • Assuntos: Basins ; Depression ; Earth sciences ; Earth, ocean, space ; Enceladus ; Exact sciences and technology ; Ices ; Interiors ; Isostasy ; Planetary Sciences ; Planetology ; Planets ; Shells ; Solid Surface Planets ; Surface materials and properties ; Tectonics ; Thermal expansion ; Thinning ; Upwelling
  • É parte de: Geophysical research letters, 2009-08, Vol.36 (16), p.L16202-n/a
  • Notas: ark:/67375/WNG-VZ4H5HZW-J
    istex:2238794EFD76CB1A6312CBBF6AA47654028EDEF2
    ArticleID:2009GL039916
    ObjectType-Article-1
    SourceType-Scholarly Journals-1
    ObjectType-Feature-2
    content type line 23
  • Descrição: Stereo‐derived topographic mapping of ∼50% of Enceladus reveals at least 6 large‐scale, ovoid depressions (basins) 90–175 km across and 800‐to‐1500 m deep and uncorrelated with geologic boundaries. In contrast, the south polar depression is larger and apparently shallower and correlates with active resurfacing. The shape and scale of the basins is inconsistent with impact, geoid surface deflections, or with dynamically supported topography. Isostatic thinning of Enceladus' ice shell associated with upwellings (and tidally‐driven ice melting) can plausibly account for these basins. Thinning implies upwarping of the base of the shell of ∼10–20 km beneath the depressions, depending on total shell thickness; loss of near‐surface porosity due to enhanced heat flow may also contribute to basin lows. Alternatively, the basins may overly cold, inactive, and hence denser ice, but thermal isostasy alone requires thermal expansion more consistent with clathrate hydrate than water ice.
  • Editor: Washington, DC: American Geophysical Union
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.