skip to main content
Primo Advanced Search
Primo Advanced Search Query Term
Primo Advanced Search prefilters

Physical Interpretations of Electrochemical Impedance Spectroscopy of Redox Active Electrodes for Electrical Energy Storage

Mei, Bing-Ang ; Lau, Jonathan ; Lin, Terri ; Tolbert, Sarah H ; Dunn, Bruce S ; Pilon, Laurent

Journal of physical chemistry. C, 2018-11, Vol.122 (43), p.24499-24511 [Periódico revisado por pares]

American Chemical Society

Texto completo disponível

Citações Citado por
  • Título:
    Physical Interpretations of Electrochemical Impedance Spectroscopy of Redox Active Electrodes for Electrical Energy Storage
  • Autor: Mei, Bing-Ang ; Lau, Jonathan ; Lin, Terri ; Tolbert, Sarah H ; Dunn, Bruce S ; Pilon, Laurent
  • É parte de: Journal of physical chemistry. C, 2018-11, Vol.122 (43), p.24499-24511
  • Descrição: This study aims to provide physical interpretations of electrochemical impedance spectroscopy (EIS) measurements for redox active electrodes in a three-electrode configuration. To do so, a physicochemical transport model was used accounting for (i) reversible redox reactions at the electrode/electrolyte interface, (ii) charge transport in the electrode, (iii) ion intercalation into the pseudocapacitive electrode, (iv) electric double layer formation, and (v) ion electrodiffusion in binary and symmetric electrolytes. Typical Nyquist plots generated by EIS of redox active electrodes were reproduced numerically for a wide range of electrode electrical conductivity, electrolyte thickness, redox reaction rate constant, and bias potential. The electrode, bulk electrolyte, charge transfer, and mass transfer resistances could be unequivocally identified from the Nyquist plots. The electrode and bulk electrolyte resistances were independent of the bias potential, while the sum of the charge and mass transfer resistances increased with increasing bias potential. Finally, these results and interpretation were confirmed experimentally for LiNi0.6Co0.2Mn0.2O2 and MoS2 electrodes in organic electrolytes.
  • Editor: American Chemical Society
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.