skip to main content

GoldenBraid: an iterative simple standardized cloning system system for standardized assembly assembly of recyclable reusable genetic modules

Sarrión Perdigones, Manuel Alejandro ; Juárez Ortega, Paloma ; Fernández Del Carmen, María Asunción ; Granell Richart, Antonio ; Orzáez Calatayud, Diego Vicente

Public Library of Science 2011

Texto completo disponível

Citações Citado por
  • Título:
    GoldenBraid: an iterative simple standardized cloning system system for standardized assembly assembly of recyclable reusable genetic modules
  • Autor: Sarrión Perdigones, Manuel Alejandro ; Juárez Ortega, Paloma ; Fernández Del Carmen, María Asunción ; Granell Richart, Antonio ; Orzáez Calatayud, Diego Vicente
  • Assuntos: BIOQUIMICA Y BIOLOGIA MOLECULAR ; MICROBIOLOGIA
  • Notas: 10.1023/A:1016052416053
    10.1038/nbt.1506
    10.1063/1.3455183
    10.1023/A:1006496308160
    info:eu-repo/grantAgreement/MICINN//BIO2010-15384/ES/FABRICANDO TOMATES SALUDABLES: BIOPIEZAS PARA INTRAGENESIS Y MOLECULAR FARMING EN SOLANACEAS/
    10.1371/journal.pone.0005553
    10.1073/pnas.0931425100
    http://www.plosone.org/article/info:doi/10.1371/journal.pone.0021622
    10.1007/s11103-006-9065-3
    PLoS ONE
    10.1038/nbt.1716
    10.1074/jbc.M109.088401
    10.1371/journal.pone.0003647
    10.1038/438417a
    10.1098/rsif.2009.0176.focus
    info:eu-repo/grantAgreement/MICINN//BIO2008-03434/ES/EL FRUTO DE TOMATE COMO BIOFACTORIA DE PROTEINAS INMUNOTERAPEUTICAS ORALES: PRODUCCION DE ANTICUERPOS FRENTE A ROTAVIRUS/ /
    10.1039/c0ib00070a
    10.1016/j.jbiotec.2005.12.020
    10.21236/ADA457791
    10.1111/j.1467-7652.2009.00402.x
    10.1016/S0378-1119(97)00388-0
    10.1105/tpc.2.12.1201
    10.1007/s00299-006-0206-6
    10.1038/nmeth.1318
    10.1126/science.1190719
    10.1093/jxb/erp006
    10.1016/S1360-1385(02)02251-3
    10.1104/pp.107.106104
    10.1104/pp.109.152249
    10.1186/1754-1611-4-1
    10.1371/journal.pone.0016765
    10.1038/nbt.1710
    10.1038/nbt.1775
  • Descrição: Synthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB), a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a set of four destination plasmids (pDGBs) designed to incorporate multipartite assemblies made of standard DNA parts and to combine them binarily to build increasingly complex multigene constructs. The relative position of type IIS restriction sites inside pDGB vectors introduces a double loop (¿braid¿) topology in the cloning strategy that allows the indefinite growth of composite parts through the succession of iterative assembling steps, while the overall simplicity of the system is maintained. We propose the use of GoldenBraid as an assembly standard for Plant Synthetic Biology. For this purpose we have GB-adapted a set of binary plasmids for A. tumefaciens-mediated plant transformation. Fast GB-engineering of several multigene T-DNAs, including two alternative modules made of five reusable devices each, and comprising a total of 19 basic parts are also described. This work was supported by the Spanish Ministry of Science and Innovation grants BIO2008-03434 and BIO2010-15384. A. Sarrion-Perdigones is a recipient of a FPI fellowship of the Spanish Ministry of Science and Innovation and P. Juarez is a recipient of a FPU fellowship from the Spanish Ministry of Education. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Sarrión Perdigones, MA.; Juárez Ortega, P.; Fernandez Del Carmen, MA.; Granell Richart, A.; Orzáez Calatayud, DV. (2011). GoldenBraid: an iterative simple standardized cloning system system for standardized assembly assembly of recyclable reusable genetic modules. PLoS ONE. 7(6):21622-21622. doi:10.1371/journal.pone.0021622 Haseloff, J., & Ajioka, J. (2009). Synthetic biology: history, challenges and prospects. Journal of The Royal Society Interface, 6(suppl_4). doi:10.1098/rsif.2009.0176.focus Check, E. (2005). Designs on life. Nature, 438(7067), 417-418. doi:10.1038/438417a Carter, G. W., Rush, C. G., Uygun, F., Sakhanenko, N. A., Galas, D. J., & Galitski, T. (2010). A systems-biology approach to modular genetic complexity. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(2), 026102. doi:10.1063/1.3455183 Matzas, M., Stähler, P. F., Kefer, N., Siebelt, N., Boisguérin, V., Leonard, J. T., … Church, G. M. (2010). High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nature Biotechnology, 28(12), 1291-1294. doi:10.1038/nbt.1710 Kosuri, S., Eroshenko, N., LeProust, E. M., Super, M., Way, J., Li, J. B., & Church, G. M. (2010). Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nature Biotechnology, 28(12), 1295-1299. doi:10.1038/nbt.1716 Ellis, T., Adie, T., & Baldwin, G. S. (2011). DNA assembly for synthetic biology: from parts to pathways and beyond. Integrative Biology, 3(2), 109-118. doi:10.1039/c0ib00070a Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6(5), 343-345. doi:10.1038/nmeth.1318 Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R.-Y., Algire, M. A., … Venter, J. C. (2010). Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science, 329(5987), 52-56. doi:10.1126/science.1190719 Knight, T. (2003). Idempotent Vector Design for Standard Assembly of Biobricks. doi:10.21236/ada457791 Anderson, J. C., Dueber, J. E., Leguia, M., Wu, G. C., Goler, J. A., Arkin, A. P., & Keasling, J. D. (2010). BglBricks: A flexible standard for biological part assembly. Journal of Biological Engineering, 4(1), 1. doi:10.1186/1754-1611-4-1 Engler, C., Kandzia, R., & Marillonnet, S. (2008). A One Pot, One Step, Precision Cloning Method with High Throughput Capability. PLoS ONE, 3(11), e3647. doi:10.1371/journal.pone.0003647 Engler, C., Gruetzner, R., Kandzia, R., & Marillonnet, S. (2009). Golden Gate Shuffling: A One-Pot DNA Shuffling Method Based on Type IIs Restriction Enzymes. PLoS ONE, 4(5), e5553. doi:10.1371/journal.pone.0005553 Butelli, E., Titta, L., Giorgio, M., Mock, H.-P., Matros, A., Peterek, S., … Martin, C. (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology, 26(11), 1301-1308. doi:10.1038/nbt.1506 Koltunow, A. M., Truettner, J., Cox, K. H., Wallroth, M., & Goldberg, R. B. (1990). Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development. The Plant Cell, 1201-1224. doi:10.1105/tpc.2.12.1201 Kobayashi, K., Munemura, I., Hinata, K., & Yamamura, S. (2006). Bisexual sterility conferred by the differential expression of Barnase and Barstar: a simple and efficient method of transgene containment. Plant Cell Reports, 25(12), 1347-1354. doi:10.1007/s00299-006-0206-6 Karimi, M., Inzé, D., & Depicker, A. (2002). GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science, 7(5), 193-195. doi:10.1016/s1360-1385(02)02251-3 Chen, Q.-J., Zhou, H.-M., Chen, J., & Wang, X.-C. (2006). A Gateway-based platform for multigene plant transformation. Plant Molecular Biology, 62(6), 927-936. doi:10.1007/s11103-006-9065-3 Estornell, L. H., Orzáez, D., López-Peña, L., Pineda, B., Antón, M. T., Moreno, V., & Granell, A. (2009). A multisite gateway-based toolkit for targeted gene expression and hairpin RNA silencing in tomato fruits. Plant Biotechnology Journal, 7(3), 298-309. doi:10.1111/j.1467-7652.2009.00402.x Lin, L., Liu, Y.-G., Xu, X., & Li, B. (2003). Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proceedings of the National Academy of Sciences, 100(10), 5962-5967. doi:10.1073/pnas.0931425100 Fujisawa, M., Takita, E., Harada, H., Sakurai, N., Suzuki, H., Ohyama, K., … Misawa, N. (2009). Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. Journal of Experimental Botany, 60(4), 1319-1332. doi:10.1093/jxb/erp006 Dafny-Yelin, M., & Tzfira, T. (2007). Delivery of Multiple Transgenes to Plant Cells. Plant Physiology, 145(4), 1118-1128. doi:10.1104/pp.107.106104 Goderis, I. J. W. M., De Bolle, M. F. C., François, I. E. J. A., Wouters, P. F. J., Broekaert, W. F., & Cammue, B. P. A. (2002). Plant Molecular Biology, 50(1), 17-27. doi:10.1023/a:1016052416053 Chen, Q.-J., Xie, M., Ma, X.-X., Dong, L., Chen, J., & Wang, X.-C. (2010). MISSA Is a Highly Efficient in Vivo DNA Assembly Method for Plant Multiple-Gene Transformation. Plant Physiology, 153(1), 41-51. doi:10.1104/pp.109.152249 Castilho, A., Strasser, R., Stadlmann, J., Grass, J., Jez, J., Gattinger, P., … Steinkellner, H. (2010). In PlantaProtein Sialylation through Overexpression of the Respective Mammalian Pathway. Journal of Biological Chemistry, 285(21), 15923-15930. doi:10.1074/jbc.m109.088401 Hamilton, C. M. (1997). A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene, 200(1-2), 107-116. doi:10.1016/s0378-1119(97)00388-0 Weber, E., Engler, C., Gruetzner, R., Werner, S., & Marillonnet, S. (2011). A Modular Cloning System for Standardized Assembly of Multigene Constructs. PLoS ONE, 6(2), e16765. doi:10.1371/journal.pone.0016765 Zhang, F., Cong, L., Lodato, S., Kosuri, S., Church, G. M., & Arlotta, P. (2011). Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature Biotechnology, 29(2), 149-153. doi:10.1038/nbt.1775 Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S., & Mullineaux, P. M. (2000). Plant Molecular Biology, 42(6), 819-832. doi:10.1023/a:1006496308160 Wieland, W. H., Lammers, A., Schots, A., & Orzáez, D. V. (2006). Plant expression of chicken secretory antibodies derived from combinatorial libraries. Journal of Biotechnology, 122(3), 382-391. doi:10.1016/j.jbiotec.2005.12.020
  • Editor: Public Library of Science
  • Data de criação/publicação: 2011
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.