skip to main content
Primo Search
Search in: Busca Geral

Constraining cosmic scatter in the Galactic halo through a differential analysis of metal-poor stars

Reggiani, Henrique ; Meléndez, Jorge ; Kobayashi, Chiaki ; Karakas, Amanda ; Placco, Vinicius

Astronomy and astrophysics (Berlin), 2017-12, Vol.608, p.A46 [Periódico revisado por pares]

Heidelberg: EDP Sciences

Texto completo disponível

Citações Citado por
  • Título:
    Constraining cosmic scatter in the Galactic halo through a differential analysis of metal-poor stars
  • Autor: Reggiani, Henrique ; Meléndez, Jorge ; Kobayashi, Chiaki ; Karakas, Amanda ; Placco, Vinicius
  • Assuntos: Abundance ; Aluminum ; Astronomical models ; Barium ; Big bang cosmology ; Calcium ; Chemical evolution ; Chromium ; Cobalt ; Galactic evolution ; Galactic formation ; Galactic halos ; Galaxy: abundances ; Galaxy: evolution ; Galaxy: halo ; Iron ; Lithium ; Low level ; Metallicity ; Metals ; Nickel ; Nuclei (nuclear physics) ; Organic chemistry ; Scattering ; Silicon ; Stars ; stars: abundances ; stars: evolution ; stars: Population II ; Stellar evolution ; Stellar mass ; Zinc
  • É parte de: Astronomy and astrophysics (Berlin), 2017-12, Vol.608, p.A46
  • Notas: istex:3293F1C5B5960A304F84FFA63DA5A8452A3BEADA
    ark:/67375/80W-F82WQ2ZC-G
    e-mail: hreggiani@gmail.com
    dkey:10.1051/0004-6361/201730750
    bibcode:2017A%26A...608A..46R
    Tables A.1–A.6 are also available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A46
    publisher-ID:aa30750-17
  • Descrição: Context. The chemical abundances of metal-poor halo stars are important to understanding key aspects of Galactic formation and evolution. Aims. We aim to constrain Galactic chemical evolution with precise chemical abundances of metal-poor stars (−2.8 ≤ [Fe/H] ≤ −1.5). Methods. Using high resolution and high S/N UVES spectra of 23 stars and employing the differential analysis technique we estimated stellar parameters and obtained precise LTE chemical abundances. Results. We present the abundances of Li, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Zn, Sr, Y, Zr, and Ba. The differential technique allowed us to obtain an unprecedented low level of scatter in our analysis, with standard deviations as low as 0.05 dex, and mean errors as low as 0.05 dex for [X/Fe]. Conclusions. By expanding our metallicity range with precise abundances from other works, we were able to precisely constrain Galactic chemical evolution models in a wide metallicity range (−3.6 ≤ [Fe/H] ≤ −0.4). The agreements and discrepancies found are key for further improvement of both models and observations. We also show that the LTE analysis of Cr II is a much more reliable source of abundance for chromium, as Cr I has important NLTE effects. These effects can be clearly seen when we compare the observed abundances of Cr I and Cr II with GCE models. While Cr I has a clear disagreement between model and observations, Cr II is very well modeled. We confirm tight increasing trends of Co and Zn toward lower metallicities, and a tight flat evolution of Ni relative to Fe. Our results strongly suggest inhomogeneous enrichment from hypernovae. Our precise stellar parameters results in a low star-to-star scatter (0.04 dex) in the Li abundances of our sample, with a mean value about 0.4 dex lower than the prediction from standard Big Bang nucleosynthesis; we also study the relation between lithium depletion and stellar mass, but it is difficult to assess a correlation due to the limited mass range. We find two blue straggler stars, based on their very depleted Li abundances. One of them shows intriguing abundance anomalies, including a possible zinc enhancement, suggesting that zinc may have been also produced by a former AGB companion.
  • Editor: Heidelberg: EDP Sciences
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.