skip to main content
Primo Search
Search in: Busca Geral

Modeling evaporation effects in conditional moment closure for spray autoignition

Borghesi, Giulio ; Mastorakos, Epaminondas ; Devaud, Cécile B. ; Bilger, Robert W.

Combustion theory and modelling, 2011-10, Vol.15 (5), p.725-752 [Periódico revisado por pares]

Taylor & Francis Group

Texto completo disponível

Citações Citado por
  • Título:
    Modeling evaporation effects in conditional moment closure for spray autoignition
  • Autor: Borghesi, Giulio ; Mastorakos, Epaminondas ; Devaud, Cécile B. ; Bilger, Robert W.
  • Assuntos: conditional moment closure ; Delay ; diesel engines ; Droplets ; Evaporation ; Ignition ; Mathematical analysis ; Mathematical models ; spray autoignition ; Sprays ; Variance
  • É parte de: Combustion theory and modelling, 2011-10, Vol.15 (5), p.725-752
  • Notas: ObjectType-Article-2
    SourceType-Scholarly Journals-1
    ObjectType-Feature-1
    content type line 23
  • Descrição: Simulations of an n-heptane spray autoigniting under conditions relevant to a diesel engine are performed using two-dimensional, first-order conditional moment closure (CMC) with full treatment of spray terms in the mixture fraction variance and CMC equations. The conditional evaporation term in the CMC equations is closed assuming interphase exchange to occur at the droplet saturation mixture fraction values only. Modeling of the unclosed terms in the mixture fraction variance equation is done accordingly. Comparison with experimental data for a range of ambient oxygen concentrations shows that the ignition delay is overpredicted. The trend of increasing ignition delay with decreasing oxygen concentration, however, is correctly captured. Good agreement is found between the computed and measured flame lift-off height for all conditions investigated. Analysis of source terms in the CMC temperature equation reveals that a convective-reactive balance sets in at the flame base, with spatial diffusion terms being important, but not as important as in lifted jet flames in cold air. Inclusion of droplet terms in the governing equations is found to affect the mixture fraction variance field in the region where evaporation is the strongest, and to slightly increase the ignition delay time due to the cooling associated with the evaporation. Both flame propagation and stabilization mechanisms, however, remain unaffected.
  • Editor: Taylor & Francis Group
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.