skip to main content
Primo Search
Search in: Busca Geral

Ultrasonic liquid metal processing: The essential role of cavitation bubbles in controlling acoustic streaming

Lebon, G.S. Bruno ; Tzanakis, Iakovos ; Pericleous, Koulis ; Eskin, Dmitry ; Grant, Patrick S.

Ultrasonics sonochemistry, 2019-07, Vol.55, p.243-255 [Periódico revisado por pares]

Netherlands: Elsevier B.V

Texto completo disponível

Citações Citado por
  • Título:
    Ultrasonic liquid metal processing: The essential role of cavitation bubbles in controlling acoustic streaming
  • Autor: Lebon, G.S. Bruno ; Tzanakis, Iakovos ; Pericleous, Koulis ; Eskin, Dmitry ; Grant, Patrick S.
  • Assuntos: Acoustic cavitation ; Acoustic streaming ; Aluminium ; Modelling ; Nonlinear acoustics ; Particle image velocimetry
  • É parte de: Ultrasonics sonochemistry, 2019-07, Vol.55, p.243-255
  • Notas: ObjectType-Article-1
    SourceType-Scholarly Journals-1
    ObjectType-Feature-2
    content type line 23
  • Descrição: •A model of acoustic streaming accounting for cavitation is implemented in OpenFOAM.•A 2D simulation matches the results of a water PIV experiment.•The net flow direction dependents on the transducer power, with upflow favoured at low power.•Acoustic streaming downflow is established at higher transducer powers.•Flow reversal is predicted to also occur in aluminium when the model is applied to liquid aluminium melt processing. The acoustic streaming behaviour below an ultrasonic sonotrode in water was predicted by numerical simulation and validated by experimental studies. The flow was calculated by solving the transient Reynolds-Averaged Navier-Stokes equations with a source term representing ultrasonic excitation implemented from the predictions of a nonlinear acoustic model. Comparisons with the measured flow field from Particle Image Velocimetry (PIV) water experiments revealed good agreement in both velocity magnitude and direction at two power settings, supporting the validity of the model for acoustic streaming in the presence of cavitating bubbles. Turbulent features measured by PIV were also recovered by the model. The model was then applied to the technologically important area of ultrasonic treatment of liquid aluminium, to achieve the prediction of acoustic streaming for the very first time that accounts for nonlinear pressure propagation in the presence of acoustic cavitation in the melt. Simulations show a strong dependence of the acoustic streaming flow direction on the cavitating bubble volume fraction, reflecting PIV observations. This has implications for the technological use of ultrasound in liquid metal processing.
  • Editor: Netherlands: Elsevier B.V
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.