skip to main content
Primo Search
Search in: Busca Geral

Mixing layer dynamics in separated flow over an estuarine sill with variable stratification

Talke, S. A. ; Horner-Devine, A. R. ; Chickadel, C. C.

Journal of Geophysical Research: Oceans, 2010-09, Vol.115 (C9), p.n/a [Periódico revisado por pares]

Washington, DC: Blackwell Publishing Ltd

Texto completo disponível

Citações Citado por
  • Título:
    Mixing layer dynamics in separated flow over an estuarine sill with variable stratification
  • Autor: Talke, S. A. ; Horner-Devine, A. R. ; Chickadel, C. C.
  • Assuntos: Brackish ; Coherence ; Earth sciences ; Earth, ocean, space ; Estuaries ; estuarine sill ; Exact sciences and technology ; Freshwater ; Geophysics ; Kinetic energy ; Marine ; mixing layer ; Oceanography ; Physical oceanography ; Richardson number ; Scientific apparatus & instruments ; Separated flow ; Stratification ; stratified flow ; Turbulent flow
  • É parte de: Journal of Geophysical Research: Oceans, 2010-09, Vol.115 (C9), p.n/a
  • Notas: ark:/67375/WNG-ZQHLHRQM-M
    ArticleID:2009JC005467
    istex:A2921CB6BB0DE739B58E0D389BBCDACD01CCBFA3
    ObjectType-Article-1
    SourceType-Scholarly Journals-1
    ObjectType-Feature-2
    content type line 23
  • Descrição: We investigate the generation of a mixing layer in the separated flow behind an estuarine sill (height H ∼ 4 m) in the Snohomish River, Washington as part of a larger investigation of coherent structures using remote and in situ sensing. During increasing ebb flows the depth d and stratification decrease and a region of sheared flow characterized by elevated production of turbulent kinetic energy develops. Profiles of velocity and acoustic backscatter exhibit coherent fluctuations of order 0.1 Hz and are used to define the boundaries of the mixing layer. Variations in the mixing layer width and its embedded coherent structures are caused by changes to both the normalized sill height H/d and to a bulk Richardson number Rih defined using the depth of flow over the sill. Entrainment ET and the mixing layer expansion angle increase as stratification and the bulk Richardson number decrease; this relationship is parameterized as ET = 0.07Rih−0.5 and is valid for approximately 0.1 < Rih < 2.8. Available comparisons with literature for inertially dominated conditions (Rih < 0.1) are consistent with our data and validate our approach, though lateral gradients may introduce an upwards bias of approximately 20%. As the ratio H/d increases over the ebb, the free surface boundary pushes the mixing layer trajectory downward, reduces its expansion angle, and produces asymmetry in the acoustic backscatter (coherent structures). Three‐dimensional divergence, as imaged by infrared video and transecting data, becomes more prominent for H/d > 0.8 due to blocking of flow by the sill.
  • Editor: Washington, DC: Blackwell Publishing Ltd
  • Idioma: Inglês

Buscando em bases de dados remotas. Favor aguardar.